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SUMMARY

A variety of shrunken estimators have been considered for the estimation
of scale parameter of an exponmential density function when a prior or
guess interval containing the parameter 6 is available Comparisons with

the minimum mean squared error esstimator ——— Z, in terms of mean

(+1) +1)
X squared error have been made. It is shown that these estimators are
X preferable than _H)x in some guessed interval of the parameter.

1. INTRODUCTION

In the estimation of an unknown parameter there often exists
some prior knowledge about the parameter which one would like to
utilize in order to get a better estimate. The Bayesian approach is
well known example in which prxor knowledge about the _parameter
is available in the form of prior distribution. '

According to Thompson [1} some times- a natural origin 6, is
there such that ome would like to that the minimum variance
unbiased linear estimator (MVULE) @ for 6 and {o move it close to
0,. This leads to a shrunken estlmator for 6 which is better
than 9 near 6, and possibly worse than 0 farther away from &,
(measured in terms of mean squared error). Thompson |2] extended
this result and shrunk the minimum variance unbiased estimator of
the mean of a normal ditribution towards an interval.

In this paper we have considered the estimation of scale
parameter 8 in exponential density function when a guess or prior
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is available in the form of an interval (8,1, 6;) which contains 6 in it.
We have considered four types of estimators and have obtained
expressions for the mean squared error of these estimators for some
0 0, . . . .
selected values of n, —6% R Eiand k. Comparisons with the minimum
) noo- ..
mean squared error estimator (m X, have been made and it is
shown that these estimators have smaller mean squared error than

the estimator (ﬁ{T) X in certain range of the parameter space.

1. DIFFERENT ESTIMATORS TOWARDS A POINT 0,

1.1 Estimator Tz :
Let Xy, X2,eee-ee , X, bea random sample of size n from an

exponential density

fob)= 5 e, x>0, 6>0. )

The maximum likelihood estimate of the scale parameter 0 is
the sample mean

= 1

X= — 7 X
n

1

n
1=

Suppose a guessed value o of 6 is available. Following Pandey
[3] an estimator for 8 can be written as

T=a [kx-+(1—k) 6,] )

where 0<a <1 and k is a constant between zero and one to be
specified by the experimenter according to his beliefin 8,. A value
of k near. zero implies strong belief in §,. Now, '

MSE(T)=a%¢ Var (%)+6°* (ad— 1) G

0
where d= k+(1—k) p with p= 7" MSE(T) is a function of p, a

and k jointly. Analytically, the simultaneous values of a and k£ which
will minimize MSE(T) cannot be found. Therefore, for a variety
of values of p, @ and k, MSE(T) has been calculated and the best
choice for ais a=1. Thus, the proposed estimator is

Tr=k%+(1—k)bo. o (4)
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Further more, it appeared that for p close to one, k should be as
small as possible, but for p far from one, k should be large. If p=1,
take =1 and k=0, thus Tt=60,. But this is obvious, because if
we know ¢ we do not need to estimate it. In practice we have to
weigh our confidence (1—k) in 8, against the risk of being far out.
So, the value of k should be chosen according to the confidence in
the guessed values 6,. The more confidence in 0, will imply
the smaller values of k.

1.2 Estimator Tr :

Thompson [1] considered the estimator 7: and determined
the value of k for which MSE(T) is minimum. Such a value of k is
Knin=(0—0,)% ((8—8,) 2+-62/n) which depends upon 0. If we replace
8 by its consistent estimator X and 62 by its consistent estimator X2,
the estimate of ki, is

A _ (53_90)2 .
K ipin= G0 P+n e (5)

Whence the point shrunken estimator towards the point 8, is

— (x_aa)a
Tr= = % e ()

X
f—p T
(x—9,) +n
1.3 Estimator TP :

The method proposed by Pandey [3]isto considered k as a
constant and fo find the value of a for which MSE(T) is minimum.
Such a value of a is

o (1K) 6]

292
[k0-+(1—1) O e+E M
which depends upon the unknown parameter 6. If we replace ¢
by its consistents estimator X and 6* by its consistent estimator X2,
we get an estimate of ;. as
A [kx+(1—k) 6,1%

Qnin= Ty
EHI- 0+ e @)

Whence the shrunken estimator towards a point 9, is
[kx4-(1—k) 8,12 %
Tp= kzxz
[kx+(1—-kK) 0,2+ e

(9)
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This estimator includes .both the estimators X and (n_-{——nl)x as the

special case for k=0 and k=1 respectively. In practice, the value
of k is determined by the experimenter according to his belief in
the guessed value 8, either due fo his past experience or with the help
of experimental materials. For example, suppose a factory is produc-
ing electric bulbs whose life times are exponentially distributed with
mean life time §. From past data the mean life time say 6, is knawn
and the [experimenter is of 90% confident that the mean life time
has not changed. Therefore he will take the value of k as .90.

1.4 Estimator T, :

Following Pandey [3] a shrunken estimator for 6 towards a
point 0, is proposed as follows :

Ty=(X)¥ (6,)19. -..(10)

This estimator also behaves like other estimator proposed in

] .
previous sections. If 0—"&1, the smaller value of k give better result

and if the difference between 8, and @ is too far, larger values'of k
are preferable.

2. SHRUNKEN ESTIMATORS TOWARDS AN INTERVAL (6, 02)
: (
‘ Consider thé situation where we have an interval (0,,85) as a *
guess of @ rather than a point 6, The shrunken estimators in this
situation can be obtained as follows :
(@) Suppose 6, and 0 are the equal probable values of 6, The
simple average of the point shrunken estimators obtained
by replacing 0, in Tr by 6; and b, respectively, will give the '.
shrunken iestimator towards an interval. Thus the
resulting estimator is {

(x—6,)° (x—0,)°
= 2 1 %2 + 3 22 f2+01+92
Fo0 D GGy

. Mr=1}

(1)

(b) Take the mean value of point shrunken estimator Tr
with equal weights at equal intervals in (8;, 6;). The
resulting estimator is

- o
2 (F— 8o

MT1=x+ 2”(02_01) IOg X

..(12)
- 9 X7
(X—0,)2+ .
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(¢) Take the mean value of the pomt shrunken estimator Tt
.with equal weights at equal mterval in (65, 6a). The .
resulting estimator is .

=kx+(1—k)(%)-. - - - (13)

(d) Ta'l‘(e' the mean value? of the point shrunken esﬂmatdr Tr
© . with- equal weights at equal intervals in (8;, #s). The
resulting estimator is

o K2 [ kEH(I—E) 6
| - Me=R \/;(l—k)(aa—ﬂ_l).{amtajn( Z )

*—ki/j%fi/—;k)ol‘) |

(¢) Take the mean valte of the point shrunken estimator Tw
, with equal weights at equal mtervals in (6,, 02) The
resultmg estimator is -

—arc t'en ( (1)

0(2 -k) 0(2 k))xk
Mw= ( .
(02— 81) (2—k)

? ] Now, the estlmator Mri is 1dent1cal to TL if we have 0p== ‘?“LBZ

...(15)

; So in M only the centre of the ‘interval is of i importance, not the end '
‘ point as such. In M7 the end points are of 1mportance If k=o,

= 01;—02 and if k=1, Mw=3%. Therefore, Mz and Mw appear
to be identical at these points.

3. COMPARISONS OF DIFFERENT PRCPOSED ESTIMATORS

| " Since 2’; follows a chl-square distribution with 2n degrees of

freedom, the dens1ly of X is

—nm

1, O)=—gapa-e (B d%; >0, 0>0. ~.16)

We have,

MSE(M7)= _:n [ " ( Gty —2) 4 ~—né(n)-
R : . 0
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2

. 01 3 02 3
u— nT u— nT
+ z et ldy--

2(.—h——;—92_—2) P(lh) Eo (u n—) +utln

s (u—n%)3
—% =1
(u—vn-%z—)z_}-u?/n e % u 1 du, ] «.(17)
MSE(M1)— ‘l—z[ K-Fn(1— k)2 (11;792——1 )2] .(18) |
1

MSE(MP)————[ 1+

(%~
® 8, A2
‘ I {arc tan( u+( -li—u/—‘/l;l)n T) —arc tan(u_-*_(_zi_/v_'_l)ig_ )}

0

e~ U u(n+3) du—

c . —n RN
I {m tan( u (1/k ~l)n r )_m tan( u+( Z l)n 5 ))
0 u[Vn » u[vVn j

e~y u(n+2) du+

Vi [‘(n-'i-Al)(—,%——'I) (ﬁ—ei)

i )T | 1),
(_! {arc tan ( u-f_(u?v’:)’" 92 )_arc tan( u-ll-(ul;\/;)n 01 ) }

ety gy ]
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o [(3) ‘Z‘ )]

=

MSE(Mw)= p

0, \2-5) 8 (2 -2
[(T()z k)(kﬂl( 1])("+2k)—2r(n+k) +n |..(20)
n*)

mE (Giy %)=t Iy ) | (@D

Properties of the estimator Mr, has been studied in a separate
paper, therefore the expression for MSE (Mr;) has not been given
here. The relative efficiency of these estimators with respect to

.. y « n _ .
minimum mean squared error estxmatorm X is defined as

MSE( ) . :
no - (n+1) .
REF( M;, D) X )—— MSEIM) ~ * i=T.L,Pand W

+.(22)

The integrals involved in the expressions of mean squared
errors can be evaluated by numerical quadrature methods. We have
evaluated these by using the 10-points Gauss-Laguerre quadrature
formula. The calculations of the relative efficiencies have been done

for different values of n,%, %— and % and are shown in Table 1.

From Table 1, we observe the following -

(i) Therelative efficiency of ML reaches at the max1mum
when 0= 1_; 2 and it decreases as the (difference between

6 and 81—{;62 increases.

(#) If k is small, i.e., we have more confidence in the guess
interval (8;, 02), Mw.'is generally the best estimator,
followed by Mw and Mr.

(i) If k is moderate ie. (.50<k<.75), Mr and MW are
preferable.

(#v) If k is near to one i.e., we have not much confidenee in
our guessed interval (6;, 62), the estimator Mp reduces to
n

CES)) X and is preferable,




TABLE 1
The Relative Efficiencies of Mp , Mp , My, and My with respcet to (n’-; ) X
o . k=25 k=50 k=75
1 -3 -
* o My
Mp My My Mp My My, Mp My \ My
2 3 4 5 ‘ 6 7 3 9 0 1 12 ‘ - 13
50 30 10176 © 10582 07413 © 05738  1.0915. 11163 08579  1.0490  1.1228 13303
30 45 10979 10070 10393  0.8542 10958 13813 12454 10653~ 11798 1.4952
50 75 1487 09283 25016 22130 1076 2109 23030 10858 12737 15666
75 112 19005 08703 10.8551  9.8078 Ty0321 29553 3382 10957 . 13316 14357
00 135 17744 08430 04488 7318 10070  2.8657 27529 10958 13265 13271
100 150 15735 0835 446l 49631 09913 25263 23994 10943 13061 12553
20 40 10447 10378 08433 06683  1.0244 12146 09952 10558  1.1462  1.4061
30 60 12232 02810 13090 11010  1.0916 15738 15172 10795 12112 1.5437
S0 100 1.6054 09033  4d6si 39587 10582 2109 28057 10008 12737 1532
75 150 16379 08504 84395 88499 10080 26953 28128  1.0951 13316 13332
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1.3570

1.4606
1.1116
0.9239
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0.9476

"0.9667

1.2595
1.8271
1.6896
1.471 6v

© 0.9551

1.0575
1.5357

1.4014

0.8308
0.8209

0.9706

0.9116 .

0.8475
0.8102
0.7974
0.7911
1.0211
0.9929
0.9531
0.9256
0.9155
0.9103
1.0097
0.9796
0.9413

0.9167

6.5645
15484

1.5484

. 4.4651

4.4651
0.5537
0.2779
0.1943
0.3842
0.5467

1.4200

11.2552
8.5890
2.8354

0.4393
0.6980
2.8354

7.0551

3.2542
1.8673
1.2946
3.7954
5.3889
0.7395
0.3876
0.2786
0.2936
0.4454
1.2633

10,4725
7.5384
"3.1436
0.3441
0.5836
25522

7.7327

0.9810
0.9648
1.0853
1.0580
0.9968
0.9378
0.9116
0.8979
1.0473
1.0466
1.0310
1.0064'
0.9929
0.9847

1.0477

1.0429 -

1.0213

0.9936

2.8657

1.7143

1.7143
2.5263
2.5263
0.9099
0.5275
0.3871
0.7088
0.9372
1.7638
3.4068
3.1549
2.4348

0.7900

1.1227

1.7638

3.4068

2.1109

1.7007

' 1.6762
2.7431

2.5158
1.0870
0.7220
0.5747
0.4656
0.7239
1.7281

3.5409

3.0550
2.3599

0.5526

"+ 0.9323

2.5228

3.0916

1.0916

1.0877
1.0750
1.0882
1.0908
1.0729
1.5380
1.0475
1.0274
1.0358
1.0453
1.0480
1.0466
1.0449
1.0310
1.0393
1.0469

1.0463

1.2810
1.2308

1.2308
1.3061

 1.3061

1.0622
0.8768
0.7916
1.0821
11931

1.4022 -

1.5508

1.5369

1.4835

1.1263

1.2593,

1.4022

1.5509

1.2068
1.1293

1.5571
1.5420

1.2865.

0.9902

0.8604.

0.7899
0.9539
1.2461

1.6179
1.6274-

1,4994

1.3979 '

1.0697

. 1.3856

1.6716

1.5075

. SUELAKRVEVd HIVOS BHIL 40 SUOLVIWIISH NAMNNVES

L11



TABLE 1—Contd.

IR REE

90 1.80 1.2321 0.9080

3.3882

© 1.8508

0.9796

3.1549

1.9125

1.0429

1.4202

1.3262
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(v) The relative efficiencies of different estimators decrease as
the sample size is increased implying that the proposed
estimators are preferable for smaller sample sizes.

3. CONCLUSIONS

We conclude that M is a useful estimator if
() k is small (i.e. 0<£k<.25)
(i) S0 L2 1+92 <1.25
and
(#if) sample size # is small.
Similarly, the estimator Mr and Mw are useful estimators if (i)
S0k 75, (i)t 01+0’ <.50 and 412~ ‘+02 >I.25 and (#if) sample size

n is small.
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