COMPARISON OF SHRUNKEN ESTIMATORS OF THE SCALE PARAMETER OF AN EXPONENTIAL DENSITY FUNCTION TOWARDS AN INTERVAL

By
B.N. Pandey and K.N. Singh
Banaras Hindu University, Varanasi-221005.

(Received ': August, 1981)

Abstract

Summary A variety of shrunken estimators have been considered for the estimation of scale parameter of an exponential density function when a prior or guess interval containing the parameter θ is available. Comparisons with the minimum mean squared error esstimator $\frac{\dot{n}}{(n+1)} \bar{x}$, in terms of mean squared error have been made. It is shown that these estimators are preferable than $\frac{n}{(n+1)} x$ in some guessed interval of the parameter.

I. Introduction

In the estimation of an unknown parameter there often exists some prior knowledge about the parameter which one would like to utilize in order to get a better estimate. The Bayesian approach is well known example in which prior knowledge about the parameter is available in the form of prior distribution.

According to Thompson [1] some times a natural origin θ_{0} is there such that one would like to that the minimum variance unbiased linear estimator (MVULE) $\hat{\boldsymbol{\theta}}$ for θ and to move it close to θ_{0}. This leads to a shrunken estimator for θ which is better than $\hat{\theta}$ near θ_{0} and possibly worse than $\hat{\theta}$ farther away from θ_{0} (measured in terms of mean squared error). Thompson [2] extended this result and shrunk the minimum variance unbiased estimator of the mean of a normal ditribution towards an interval.

In this paper we have considered the estimation of scale parameter θ in exponential density function when a guess or prior
is available in the form of an interval (θ_{1}, θ_{2}) which contains θ in it. We have considered four types of estimators and have obtained expressions for the mean squared error of these estimators for some selected values of $n, \frac{\theta_{1}}{\theta}, \frac{\theta_{2}}{\theta}$ and k . Comparisons with the minimum mean squared error estimator $\frac{n}{(n+1)} \bar{x}$, have been made and it is shown that these estimators have smaller mean squared error than the estimator $\frac{n}{(n+1)} \bar{x}$ in certain range of the parameter space.

1. Different Estimators Towards a point θ_{0}

1.1 Estimator T_{L} :

Let $x_{1}, x_{2}, \ldots \ldots, x_{n}$ be a random sample of size n from an exponential density

$$
\begin{equation*}
f(x, \theta)=\frac{1}{\theta} e^{-x / \theta}, \quad x>0, \theta>0 . \tag{1}
\end{equation*}
$$

The maximum likelihood estimate of the scale parameter θ is the sample mean

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{1}
$$

Suppose a guessed value θ_{0} of θ is available. Following Pandey [3] an estimator for θ can be written as

$$
\begin{equation*}
T=a\left[k \bar{x}+(1-k) \theta_{o}\right] \tag{2}
\end{equation*}
$$

where $0 \leqslant a \leqslant 1$ and k is a constant between zero and one to be specified by the experimenter according to his belief in θ_{0}. A value of k near. zero implies strong belief in $\boldsymbol{\theta}_{o}$. Now,

$$
\begin{equation*}
M S E(T)=a^{2} k^{2} \operatorname{Var}(\bar{x})+\theta^{2}(a d-1)^{2} \tag{3}
\end{equation*}
$$

where $d=k+(1-k) p$ with $p=\frac{\theta_{o}}{\theta} . \operatorname{MSE}(T)$ is a function of p, a and k jointly. Analytically, the simultaneous values of a and k which will minimize $\operatorname{MSE}(T)$ cannot be found. Therefore, for a variety of values of p, a and $k, M S E(T)$ has been calculated and the best choice for a is $a=1$. Thus, the proposed estimator is

$$
\begin{equation*}
T_{L}=k \bar{x}+(1-k) \theta_{o} . \tag{4}
\end{equation*}
$$

Further more, it appeared that for p close to one, k should be as small as possible, but for p far from one, k should be large. If $p=1$, take $a=1$ and $k=0$, thus $T_{L}=\theta_{o}$. But this is obvious, because if we know θ we do not need to estimate it. In practice we have to weigh our confidence ($1-k$) in θ_{o} against the risk of being far out. So, the value of k should be chosen according to the confidence in the guessed values θ_{o}. The more confidence in θ_{o} will imply the smaller values of k.

1.2 Estimator T_{T} :

Thompson [1] considered the estimator $T L$ and determined the value of k for which $\operatorname{MSE}\left(T_{L}\right)$ is minimum. Such a value of k is $k_{m i n}=\left(\theta-\theta_{o}\right)^{2} /\left(\left(\theta-\theta_{o}\right)^{2}+\theta^{2} / n\right)$ which depends upon θ. If we replace θ by its consistent estimator \bar{x} and θ^{2} by its consistent estimator \bar{x}^{2}, the estimate of $k_{\text {min }}$ is

$$
\begin{equation*}
\hat{k}_{m i n}=\frac{\left(\bar{x}-\theta_{o}\right)^{2}}{\left(\bar{x}-\theta_{o}\right)^{2}+\bar{x}^{2} / n} \tag{5}
\end{equation*}
$$

Whence the point shrunken estimator towards the point θ_{o} is

$$
\begin{equation*}
T_{r}=\frac{\left(\bar{x}-\theta_{o}\right)^{3}}{\left(\bar{x}-\theta_{o}\right)^{2}+\frac{\bar{x}^{2}}{n}}+\theta_{o} \tag{6}
\end{equation*}
$$

1.3 Estimator T_{P} :

The method proposed by Pandey [3] is to considered k as a constant and to find the value of a for which $\operatorname{MSE}(T)$ is minimum. Such a value of a is

$$
\begin{equation*}
u_{m i n}=\frac{\left[k \theta+(1-k) b_{o}\right] \theta}{\left[k \theta+(1-k) \theta_{o}\right]^{2}+\frac{k^{2} \theta^{2}}{n}} \tag{7}
\end{equation*}
$$

which depends upon the unknown parameter θ. If we replace θ by its consistents estimator \bar{x} and $\boldsymbol{\theta}^{2}$ by its consistent estimator \bar{x}^{2}, we get an estimate of $a_{m i n}$ as

$$
\begin{equation*}
\hat{a}_{m i n}=\frac{\left[k \bar{x}+(1-k) \theta_{o}\right] \bar{x}}{\left\{\mathrm{k} \bar{x}+(1-k) \theta_{o}\right\}^{2}+\frac{k^{2} \bar{x}^{2}}{n}} \tag{8}
\end{equation*}
$$

Whence the shrunken estimator towards a point $\boldsymbol{\theta}_{o}$ is

$$
\begin{equation*}
T_{P}=\frac{\left[k \bar{x}+(1-k) \theta_{0}\right]^{2} \bar{x}}{\left[k \bar{x}+(1-k) \theta_{o}\right]^{2}+\frac{k^{2} \bar{x}^{2}}{n}} \tag{9}
\end{equation*}
$$

This estimator includes both the estimators \bar{x} and $\frac{n}{(n+1)} \bar{x}$ as the special case for $k=0$ and $k=1$ respectively. In practice, the value of k is determined by the experimenter according to his belief in the guessed value θ_{0} either due to his past experience or with the help of experimental materials. For example, suppose a factory is producing electric bulbs whose life times are exponentially distributed with mean life time θ. From past data the mean life time say θ_{o} is known and the [experimenter is of 90% confident that the mean life time has not changed. Therefore he will take the value of k as .90 .

1.4 Estimator \mathbf{T}_{w} :

Following Pandey [3] a shrunken estimator for θ towards a point θ_{o} is proposed as follows:

$$
\begin{equation*}
T_{w}=(\bar{x})^{k}\left(\theta_{o}\right)^{(1-k)} . \tag{10}
\end{equation*}
$$

This estimator also behaves like other estimator proposed in previous sections. If $\frac{\theta_{o}}{\theta} \simeq 1$, the smaller value of k give better result and if the difference between θ_{o} and θ is too far, larger values of k are preferable.

2. Shrunken Estimators Towards an Interval (θ_{1}, θ_{2})

Consider the situation where we have an interval $\left(\theta_{1}, \theta_{2}\right)$ as a guess of θ rather than a point θ_{0} The shrunken estimators in this situation can be obtained as follows :
(a) Suppose θ_{1} and θ_{2} are the equal probable values of θ_{o}. The simple average of the point shrunken estimators obtained by replacing θ_{o} in $T T$ by θ_{1} and θ_{2} respectively, will give the shrunken 'estimator towards an interval. Thus the resulting estimator is

$$
M_{T}=\frac{1}{2}\left[\frac{\left(\bar{x}-\theta_{1}\right)^{3}}{\left(\bar{x}-\theta_{1}\right)^{2}+\frac{\bar{x}^{2}}{n}}+\frac{\left(\bar{x}-\theta_{2}\right)^{3}}{\left(\bar{x}-\theta_{2}\right)^{2}+\frac{\bar{x}_{2}}{n}}+\theta_{1}+\theta_{2}\right]
$$

(b) Take the mean value of point shrunken estimator T_{T} with equal weights at equal intervals in $\left(\theta_{1}, \theta_{2}\right)$. The resulting estimator is

$$
\begin{equation*}
M_{T_{1}}=\bar{x}+\frac{\bar{x}^{2}}{2 n\left(\theta_{2}-\theta_{1}\right)} \log \left\{\frac{\left(\bar{x}-\theta_{2}\right)^{2}+\frac{\bar{x}^{2}}{n}}{\left(\bar{x}-\theta_{1}\right)^{2}+\frac{\bar{x}^{2}}{n}}\right\} \tag{12}
\end{equation*}
$$

(c) Take the mean value of the point shrunken estimator T_{L} with equal weights at equal interval in $\left(\theta_{1}, \theta_{\mathrm{a}}\right)$. The resulting estimator is .
$M_{L}=k \bar{x}+(1-k)\left(\frac{\theta_{1}+\theta_{2}}{2}\right)$.
(d) Take the mean value of the point shrunken estimator T_{P} with equal weights at equal intervals in (θ_{1}, θ_{2}). The resulting estimator is

$$
\begin{array}{r}
M_{P}=\bar{x}-\frac{k \bar{x}^{2}}{\sqrt{n}(1-k)\left(\theta_{2}-\theta_{1}\right)}\left\{\arctan \left(\frac{k \bar{x}+(\mathrm{I}-k) \theta_{2}}{k \bar{x} / \sqrt{n}}\right)\right. \\
\left.\quad-\arctan \left(\frac{k \bar{x}+(1-k) \theta_{1}}{k \bar{x} / \sqrt{n}}\right)\right\} \quad \cdots(\mathrm{I} \tag{I4}
\end{array}
$$

(e) Take the mean value of the point shrunken estimator T_{W} with equal weights at equal intervals in $\left(\theta_{1}, \theta_{2}\right)$. The resulting estimator is

$$
\begin{equation*}
\mathrm{M} w=\frac{\left(\theta_{2}^{(2-k)}-\theta_{1}^{(2-k)}\right) \bar{x}^{k}}{\left(\theta_{2}-\theta_{1}\right)(2-k)} \tag{15}
\end{equation*}
$$

Now, the estimator M_{L} is identical to T_{L} if we have $\theta_{0}=\frac{\theta_{1}+\theta_{2}}{2}$ So in $M L$ only the centre of the interval is of importance, not the end point as such. In $M \boldsymbol{T}$ the end points are of importance. If $k=0$, $M W=\frac{\theta_{1}+\theta_{2}}{2}$ and if $k=1, M W=\bar{x}$. Therefore, $M L$ and $M W$ appear to be identical at these points.

3. Comparisons of Different Proposed Estimators

Since $\frac{2 n \bar{x}}{\theta}$ follows a chi-square distribution with $2 n$ degrees of freedom, the density of \bar{x} is

$$
\begin{equation*}
f(\bar{x}, \theta)=\frac{n^{n}}{\theta^{n} \Gamma(n)} e^{\frac{-n x}{\theta}}(\bar{x})^{n-1} d \bar{x} ; \bar{x}>0, \theta>0 \tag{16}
\end{equation*}
$$

We have,

$$
M S E(M T)=\frac{\theta^{2}}{4 n}\left[n\left(\frac{\theta_{1}+\theta_{2}}{\theta}-2\right)^{2}+\frac{1}{n \Gamma(n)}-\int_{0}^{\infty}\right.
$$

$$
\begin{aligned}
& \left\{\frac{\left(u-n \frac{\theta_{1}}{\theta}\right)^{3}}{\left(u-n \frac{\theta_{1}}{\theta}\right)^{2}+u^{2} / n}+\frac{\left(u-n \frac{\theta_{2}}{\theta}\right)^{3}}{\left(u-n \frac{\theta_{2}}{\theta}\right)^{2}+u^{2} / n}\right\}^{2} e^{-u_{u} n^{n-1} d u+} \\
& 2\left(\frac{\theta_{1}+\theta_{2}}{\theta}-2\right) \frac{1}{\Gamma(n)} \int_{0}^{\infty}\left\{\frac{\left(u-n \frac{\theta_{1}}{\theta}\right)^{3}}{\left(u-n \frac{\theta_{1}}{\theta}\right)^{2}+u^{2} / n}\right. \\
& \left.+\frac{\left(u-n \frac{\theta_{2}}{\theta}\right)^{3}}{\left(u-n-\frac{\theta_{2}}{\theta}\right)^{2}+u^{2} / n}\right\} e^{\left.-u u^{n-1} d u .\right]} \\
& \operatorname{MSE}\left(M_{L}\right)=\frac{\theta^{2}}{n}\left[k^{2}+n(1-k)^{2}\left(\frac{\theta_{1}+\theta_{2}}{2 \theta}-1\right)^{2}\right] \\
& \operatorname{MSE}(M P)=\frac{\theta^{2}}{n}\left[1+\frac{1}{n^{3} \Gamma(n+1)\left(\frac{1}{k}-1\right)^{2}\left(\frac{\theta_{2}-\theta_{1}}{\theta}\right)^{2}}\right. \\
& \int_{0}^{\infty}\left\{\arctan \left(\frac{u+\left(\frac{1}{k}-1\right) n \frac{\theta_{2}}{\theta}}{u \mid \sqrt{\bar{n}}}\right)-\arctan \left(\frac{u+\left(\frac{1}{k}-1\right) n \frac{\theta_{1}}{\theta}}{u / \sqrt{n}}\right)\right\}^{2} \\
& e^{-u} u^{(n+3)} d u-\frac{2}{n^{3} 2 \Gamma(n+1)\left(\frac{1}{k}-1\right)\left(\frac{\theta_{2}-\theta_{1}}{\theta}\right)} \\
& \int_{0}^{\infty}\left\{\arctan \left(\frac{u \cdot(1 / k-1) n \frac{\Delta \theta}{\theta}}{u / \sqrt{n}}\right)-\arctan \left(\frac{u+\left(\frac{1}{k}-1\right) n \frac{\theta_{1}}{\theta}}{u / \sqrt{n}}\right)\right\} \\
& e^{-u} u^{(n+2)} d u+\frac{2}{\sqrt{n} \Gamma(n+1)\left(\frac{1}{k}-1\right)\left(\frac{\theta_{2}-\theta_{1}}{\theta}\right)} \\
& \int_{0}^{\infty}\left\{\arctan \left(\frac{u+\left(\frac{1}{k}-1\right) n \frac{\theta_{2}}{\theta}}{u / \sqrt{n}}\right)-\arctan \left(\frac{u+\left(\frac{1}{k}-1\right) n \frac{\theta_{1}}{\theta}}{u / \sqrt{n}}\right)\right\} \\
& \left.e^{-u} u^{(n+1)} d u\right]
\end{aligned}
$$

$$
\begin{align*}
& M S E(M w)=\frac{\theta^{2}}{n}\left[\frac{\left[\left(\frac{\theta_{2}}{\theta}\right)^{(2-k)}-\left(\frac{\dot{\theta}_{1}}{\theta}\right)^{(2-k)}\right]}{(2-k) n^{(k-1)}\left(\frac{\theta_{2}-\theta_{1}}{\theta}\right) \Gamma(n)}\right. \\
& \left\{\left[\frac{\left[\left(\frac{\theta_{2}}{\theta}\right)^{(2-k)}-\left(\frac{\theta_{1}}{\theta}\right)^{(2-k)}\right] \Gamma(n+2 k)}{(2-k)\left(n^{k}\right)\left(\frac{\theta_{2}-\theta_{1}}{\theta}\right)}-2 \Gamma(n+k)\right\}+n\right] \ldots \tag{20}\\
& \left.M S E\left(\frac{n}{(n+1)} \bar{x}\right)=\frac{\theta^{2}}{(n+1)^{*}}\right) \tag{2I}
\end{align*}
$$

Properties of the estimator $M T_{1}$ has been studied in a separate paper, therefore the expression for $M S E\left(M T_{1}\right)$ has not been given here. The relative efficiency of these estimators with respect to minimum mean squared error estimator $\frac{n}{(n+1)} \bar{x}$ is defined as

$$
\begin{equation*}
\operatorname{REF}\left(M_{i}, \frac{n}{(n+1)} \bar{x}\right)=\frac{M S E\left(\frac{n}{(n+1)} \bar{x}\right)}{M S E\left[M_{i}\right)}, i=T \cdot L, P \text { and } W \tag{22}
\end{equation*}
$$

The integrals involved in the expressions of mean squared eirors can be evaluated by numerical quadrature methods. We have evaluated these by using the 10 -points Gauss-Laguerre quadrature formula. The calculations of the relative efficiencies have been done for different values of $n, \frac{\theta_{1}}{\theta}, \frac{\theta_{2}}{\theta}-$ and k and are shown in Table I.

From Table 1, we observe the following:-
(i) The relative efficiency of $M L$ reaches at the maximum when $\theta=\frac{\theta_{1}+\theta_{2}}{2}$ and it decreases as the difference between θ and $\frac{\theta_{1}+\theta_{2}}{2}$ increases.
(ii) If k is small, i.e., we have more confidence in the guess interval $\left(\theta_{1}, \theta_{2}\right), M L$ is generally the best estimator, followed by $M W$ and $M T$.
(iii) If k is moderate i.e. $(.50 \leqslant k \leqslant .75), M T$ and $M W$ are preferable.
(iv) If k is near to one i.e., we have not much confidenee in our guessed interval (θ_{1}, θ_{2}), "the estimator M_{P} reduces to $\frac{n}{(n+1)} \bar{x}$ and is preferable.

TABLE 1
The Relative Efficiencies of M_{T}, M_{P}, M_{L} and M_{W} with respect to $\frac{n}{(n+1)} \bar{X}$

n	$\underline{\theta_{1}}$	$\frac{\theta_{2}}{\theta}$	M_{T}	$k=.25$			$k=.50$			$k=75$		
				M_{P}	M_{L}	$M_{\text {W }}$	M_{P}	M_{L}	$M_{\text {WF }}$	M_{P}	M_{L}	M_{W}
1	2	3	4	5	6	7	8	9	10	11	12	$\because 13$
. 20		. 30	1.0176	1.0582	0.7413	0.5738	1.0915	1.1163	0.8579	1.0490	1.1228	1.3303
. 30		. 45	1.0979	1.0070	1.0393	0.8542	1.0958	1.3813	1.2454	1.0653	1.1798	1.4952
-	. 50	. 75	1.4827	0.9283	2.5016	2.2130°	1.0746	2.1099	2.3030	1.0858	1.2737	1.5666
	. 75	1.12	1.9005	0.8703	10.8551	9.8078	1.0321	2.9553	3.1382	1.0957	1.3316	1.4357
	. 90	1135	1.7744	0.8480	9.4488	8.7318	1.0070	2.8657	2.7929	1:0958	1.3265	1.3271
	1.00	1.50	1.5735	0.8365	4.4651	4.9631	0.9913	2.5263	2.3994	1.0943	1.3061	1.2553
	. 20	. 40	1.0447	1.0378	0.8433	0.6683	1.0244	1.2146	0.9952	1.0558	1.1462	1.4061
	. 30	. 60	1.2232	0.2810	1.3090	1.1010	1.0916	1.5738	1.5172	1.0795	1.2112	1.5437
3	. 50	1.00	1.6054	0.9033	4.4651	3.9587	1.0582	2.1099	2.8057	1.0908	1,2737	15321
	. 75	1.50	I. 6379	0.8504	8.4395	8.8499	1.0080	2.6953	2.8128	1.0951	1.3316	1.3332

	． 90	1.80	1.3928	0.8308	6.5645	3.2542	0.9810	2.8657	2.1109	1.0916	1.2810	1.2068	\sim
	1.00	2.00	1.2099	0.8209	15484	1.8673	0.9648	1.7143	1．7007	1.0877	1.2308	1.1293	長
	． 20	． $80{ }^{\circ}$	1.3570	0.9706	1.5484	1.2946	1.0853	1.7143	1.6762	1.0750	1.2308	1.5571	啰
	． 30	1.20	1.4606	0.9116	4.4651	3.7954	1.0580	2.5263	2.7431	1.0882	1.3061	1.5420	思
	． 50	2.00	1.1116	0.8475	4.4651	5.3889	0.9968	2.5263	2.5158	1.0908	1.3061	1.2865	\％
	． 75	3.00	0.9239	0.8102	0.5537	0.7395	0.9378	0.9099	1.0870	1.0729	1.0622	0.9902	－
	． 90	3.60	0.8882	0.7974	0.2779	0.3876	0.9116	0.5275	0.7220	1.5380	0.8768	0.8604	0
	1.00	4.00	0.8704	0.7911	0.1943	0.2786	0.8979	0.3871	0.5747	1.0475	0.7916	0.7899	－
	． 20	． 30	0.9476	1.0211	0.3842	0.2936	1.0473	0.7088	0.4656	1.0274	1.0821	0.9539	
	． 30	． 45	0.9667	0.9929	0.5467	0.4454	1.0466	0.9372	0.7239	1.0358	1.1931	1.2461	\％
	． 50	． 75	1.2595	0.9531	1.4200	1.2633	1.0310	1.7638	1.7281	1.0453	1.4022	1.6179	\％
	． 75.	1.12	1.8271	0.9256	11.2552	10.4725	1.0064	3.4068	3.5409	1.0480	1.5508	1.6274	$\underset{\chi}{7}$
	． 90	1.35	1.6896	0.9155	8.5890	7.5384	0.9929	3.1549	3.0550	1.0466	1.5369	1.4994	鿬
	1.00	1.50	1.4716	0.9103	2.8354	3.1436	0.9847	2.4348	2.3599	1.0449	1.4835	1.3979	苋
7	30	． 40	0.9551	1.0097	0.4393	0.3441	1.0477	0.7900	0.5526	1.0310	1.1263	1.0697	
	.30	． 60	1.0575	0.9796	0.6980	0.5836	1.0429	1.1227	${ }^{*} 0.9323$	1.0393	1.2593	1.3856	
	． 50	1.00	1.5357	0.9413	2.8354	2.5522	1.0213	1.7638	2.5228	1.0469	1.4022	1.6716	
	． 75	1.50	1.4014	0.9167	7.0551	7.7327	0.9936	3.4068	3.0916	1.0463	1.5509	1.5075	$\stackrel{\sim}{\sim}$

TABLE 1-Contd.

1	2	3	14	5	5	\% 7	8	9	10	11	12	13
	. 90	1.80	1.2321	0.9080	3.3882	1.8508	0.9796	3.1549	1.9125	1.0429	1.4202	1.3262
	1,00	2.00	1.1107	0.9036	0.8358	0.9842	0.9714	1.2728	1.3729	1.0399	1.3024	1.2095
	. 20	. 80	1.2568	0.9751	0.8358	0.6951	1.0389	1.2728	1.0663	1.0403	1.3024	1.4408
	.30	1.20	1.3408	0.9461	2.8354	2.4193	10218	2.4348	2.4023	1.0456	1.4835	1.6660
	. 50	2.00	0.9174	0.9161	2.8354	3.5154	0.9885	2.4348	2.5567	1.0433	1.4835	1.4430
	.75	3.00	0.9863	0.8994	0.2844	0.3693	0.9588	0.5504	0.7433	1.0308	0.9750	1.0025
	:90	3,60	1.0999	0.8939	0.1408	0.1908	0.9461	0.2922	0.4488	1.0218	0.7022	0.8198
	1.00	4.00	1.1293	0.8912	0.0981	0.1366	0.9392	0.2090	0.3437	1.0158	0.5657	0.7266
	. 20	. 30	0.9484	0.9960	0.1950	0.1482	1.0048	03973	0.2412	0.9930	0.8603	0.5819
	. 30	. 45	0.9358	0.9843	0.2792	0.2265	1.0056	0.5467	0.3877	0.9977	1.0095	0.8618
	. 50	. 75	1.1245	0.9680	0.7506	0.6686	0.9999	1.2060	1.0867	1.0034	1.3502	1.4512
	. 75	1.12	1.7905	0.9568	9.8211	9.2512	0.9899	3.5424	3.6433	1.0056	1.6559	1.7177
	. 90	1.35	1.7406	0.9528	6.3830	5.1780	0.9843	3.0380	2.9708	1.0056	1.6244	1.5721

(v) The relative efficiencies of different estimators decrease as the sample size is increased implying that the proposed estimators are preferable for smaller sample sizes.

3. Conclusions

We conclude that $M L$ is a useful estimator if
(i) k is small (i.e. $0 \leqslant k \leqslant .25$)
(ii) $.50 \leqslant \frac{\theta_{1}+\theta_{2}}{2 \theta} \leqslant 1.25$
and
(iii) sample size n is small.

Similarly, the estimator M_{T} and M_{w} are useful estimators if (i) $.50 \leqslant k \leqslant .75$, (ii) $\frac{\theta_{1}+\theta_{2}}{2 \theta} \leqslant .50$ and $\frac{\theta_{1}+\theta_{2}}{2 \theta} \geqslant 1.25$ and (iii) sample size n is small.

Acknowledgement

The authors are thankful to the referee for valuable suggestions and comments.

References

[1] Thompson, J.R. (1968a) : 'Some shrinkage techniques for estimating the mean". Jour. Amer. State. Assoc. 63 113-22.
[2] Thompson, J.R. (1968b): "Accuracy borrowing in the estimation of the mean by shrinkage to an interval". Jour, Amer. Stat. Assoc. 63, 953-63.
[3] Pandey, B.N. (1979) : 'On shrinkage estimation of normal population Variance." Commun. Statist, A8, 359-65.

